B4 – Multiscale Modeling of the Oxidative Removal of Pollutants

Objective

This project aims at a theoretical description of the oxidative removal of pollutants over noble metal based catalysts by a multiscale approach using DFT calculations that form the basis of kinetic modeling of reactor models. As starting point we consider investigations of CO and CH4 oxidation over supported Pt and Pd-based catalysts. Central questions relate to the identification of the active site for the various types of materials investigated and the corresponding reaction mechanism at the atomic-scale. Using the kinetics derived from the DFT calculations an elementary-step-based microkinetic model will be developed for fixed bed/plug flow (1D) and channel (2D) reactor models.

Project-related publications by participating researchers

Dr. Sofia Angeli

L. Turchetti, M. A. Murmura, G. Monteleone, A. Giaconia, A. A. Lemonidou, S. D. Angeli, V. Palma, C. Ruocco, M. C. Annesini, Kinetic assessment of Ni-based catalysts in low-temperature methane/biogas steam reforming. Int. J. Hydrogen Energy, 2016, 41, 16865-16877

DOI: 10.1016/j.ijhydene.2016.07.245

S. D. Angeli, L. Turchetti, G. Monteleone, A. A. Lemonidou, Catalyst development for steam reforming of methane and model biogas at low temperature. Appl. Catal. B, 2016, 181, 34-46

DOI: 10.1016/j.apcatb.2015.07.039

P. Kechagiopoulos, S. D. Angeli, A. A. Lemonidou, Low temperature steam reforming of methane: A combined isotopic and microkinetic study. Appl. Catal. B. 2017, 205, 238-253

DOI: 10.1016/j.apcatb.2016.12.033

H. Gossler, L. Maier, S. D. Angeli, S. Tischer, O. Deutschmann, CaRMeN: an improved computer-aided method for developing catalytic reaction mechanisms. Catalysts. 2019, 9, 227

DOI: 10.3390/catal9030227

H. Gossler, L. Maier, S. D. Angeli, S. Tischer, O. Deutschmann, CaRMeN: A tool for analysing and deriving kinetics in the real world. Phys. Chem. Chem. Phys. 2018, 20, 10857-10876

DOI: 10.1039/C7CP07777G

Prof. Dr. Felix Studt

Z.-J. Zhao, S. Liu, S. Zha, D. Cheng, F. Studt, G. Henkelman, J. Gong, Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Rev. Mater. 2019, 4, 792-804

DOI: 10.1038/s41578-019-0152-x

F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. S. Hummelshøj, S. Dahl, I. Chorkendorff, J. K. Nørskov, Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chem. 2014, 6, 320-324

DOI: 10.1038/nchem.1873

A. A. Latimer, A. R. Kulkarni, H. Aljama, J. H. Montoya, J. S. Yoo, C. Tsai, F. Abild-Pedersen, F. Studt, J. K. Nørskov, Understanding trends in C-H bond activation in heterogeneous catalysis. Nature Mater. 2017, 16, 225-229

DOI: 10.1038/nmat4760

J. S. Yoo, J. Schumann, F. Studt, F. Abild-Pedersen, J. K. Nørskov, Theoretical investigation of methane oxidation on Pd(111) and other metallic surfaces. J. Phys. Chem. C, 2018, 122, 16023-16032

DOI: 10.1021/acs.jpcc.8b02142

P. N. Plessow, A. Smith, S. Tischer, F. Studt, Identification of the reaction sequence of the MTO initiation mechanism using ab initio-based kinetics. J. Am. Chem. Soc. 2019, 141, 5908-5915

DOI: 10.1021/jacs.9b00585