C5 – Understanding and modeling the influence of real operation conditions on catalyst performance

Objective

The objective of project C5 is an improved understanding of the relation of catalyst structure and activity for cleaning exhaust gases in transient real engine operation. Both the understanding of the structure-activity relation and the very dynamic operation of a real engine demand time- and space resolved emission measurements enabling cycle resolved emission analysis as well as time and space resolved numerical simulation of the emission control devices. Experimental and simulation data will be compared evaluating the performance of the developed materials and models. In this way, this project closes the loop between the microscopic, mesoscopic, macroscopic and technical level of the CRC.

Project-related publications by participating researchers

Prof. Dr. sc. techn. Thomas Koch

C. Disch, J. Pfeil, H. Kubach, T. Koch, U. Spicher, O. Thiele, Experimental investigations of a DISI engine in transient operation with regard to particle and gaseous engine-out emissions, SAE Int. J. Engines, 2016, 9, 262-278

DOI: 10.4271/2015-01-1990

T. Schöffler, K. Hoffmann, T. Koch, Stoichiometric natural gas combustion in a single cylinder SI engine and impact of charge dilution by means of EGR. SAE Technical Paper 2013-24-0113 2013, 2013, 12, 1

DOI: 10.4271/2013-24-0113

F. Rosenthal, H. Kubach, T. Koch, Pilot Injection of reactive fuels as ignition source in natural gas engines with lean burn concept, ASME Technical Paper ICEF2017-3589, 2017

DOI: 10.1115/ICEF2017-3589

M. Rößler, A. Velji., C. Janzer, T. Koch et al., Formation of engine internal NO2: measures to control the NO2/NOx ratio for enhanced exhaust after treatment, SAE Int. J. Engines, 10(4):2017, 2017, 10, 1

DOI: 10.4271/2017-01-1017

J. Dörnhöfer, M. Börnhorst, C. Ates, N. Samkhaniani, J. Pfeil, M. Wörner, R. Koch, H.-J. Bauer, O. Deutschmann, B. Frohnapfel, T. Koch, A holistic view on urea injection for NOx emission control: impingement, re-atomization and deposit formation. Emission Control Sci. & Technol., 2019, 6, 228-243

DOI: 10.1007/s40825-019-00151-0

Prof. Dr. Olaf Deutschmann

D. Chan, S. Tischer, J. Heck, C. Diehm, O. Deutschmann, Correlation between catalytic activity and catalytic surface area of Pt/Al2O3 DOC: An experimental and microkinetic modeling study. Appl. Catal. B. 2014, 165, 153-165

DOI: 10.1016/j.apcatb.2014.03.009

M. Hettel, D. Diehm, B. Torkashvand, O. Deutschmann, Critical evaluation of in situ probe techniques for catalytic honeycomb monoliths. Cat. Today, 2013, 216, 2-10

DOI: 10.1016/j.cattod.2013.05.005

H. Stotz, L. Maier, A. Boubnov, A.T. Gremminger, J.-D. Grunwaldt, O. Deutschmann, Surface reaction kinetics of methane oxidation over PdO. J. Catal. 2019, 370, 152-175

DOI: 10.1016/j.jcat.2018.12.007

B. Torkashvand, L. Maier, T. Schedlbauer, M. Casapu, J.-D. Grunwaldt, O. Deutschmann, On the challenges and constrains of ultra-low emission limits: Formaldehyde oxidation in catalytic sinusoidal-shaped channels. Chem. Eng. Sci. 2019, 195, 841-850

DOI: 10.1016/j.ces.2018.10.031

C. Diehm, O. Deutschmann, Hydrogen production by catalytic partial oxidation of methane over staged Pd/Rh coated monoliths: Spatially resolved concentration and temperature profiles. Int. J. Hydrog. Energy, 2014, 39, 17998-18004

DOI: 10.1016/j.ijhydene.2014.06.094