A1 - Structure and Chemical Reactivity of Size-Selected Clusters in Gas Phase

Objective

Project A1 aims to unravel the influence of size, structure, charge and oxidation state on the oxidation kinetics of CO, NO and CHadsorbates on ionic Ptn and Pdn (n<100) clusters and their alloys over a large temperature and partial pressure range. To this end we will use a unique combination of structure sensitive methods (TIED, IRPD) and reactivity measurements (RITMS) in gas-phase.
Together with ab initio computations these experiments will help to infer the intrinsic structural and electronic origins for catalytic activity. These insights will allow disentangling support effects from intrinsic properties and can help to control and tune the cluster support interaction for a given reaction.

Project-related publications by participating researchers

Prof. Dr. Ueli Heiz

J. Eckhard, D. Neuwirth, M. Tschurl, U. Heiz, From oxidative degradation to direct oxidation: Size regimes in the consecutive reaction of cationic tantalum clusters with dioxygen. Phys. Chem. Chem. Phys. 2017, 19, 10863-10869

DOI: 10.1039/C7CP01293D

D. Neuwirth, J. Eckhard, B. Visser, M. Tschurl, U. Heiz, Two reaction regimes in the oxidation of larger cationic tantalum clusters (Tan+, n = 13–40) under multi-collision conditions. Phys. Chem. Chem. Phys. 2016, 18, 8115-8119

DOI: 10.1039/C5CP07245J

A. Crampton, M. Rötzer, U. Landman, U. Heiz, Can support acidity predict sub-nanometer catalyst activity trends? ACS Catal2017, 7, 6738

DOI: 10.1021/acscatal.7b01844

A. Crampton, M. Rötzer, F. Schweinberger, B. Yoon, U. Landman, U. Heiz, Controlling ethylene hydrogenation reactivity on Pt13 clusters by varying the stoichiometry of the amorphous silica support. Angew. Chem. Int. Ed. 2016, 55, 8953-8957

DOI: 10.1002/anie.201603332

A. Crampton, M. Rötzer, C. Ridge, F. Schweinberger, U. Heiz, B. Yoon, U. Landman, Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters. Nat. Commun. 2016, 7, 10389

DOI: 10.1038/ncomms10389

PD Detlef Schooss

T. Rapps, R. Ahlrichs, E. Waldt, M.M. Kappes, D. Schooss, On the structures of 55-atom transition-metal clusters and their relationship to the crystalline bulk. Angew. Chem. Int. Ed. 2013, 52, 6102

DOI: 10.1002/anie.201303643

D. Bumüller, A.-S. Hehn, E. Waldt, R. Ahlrichs, M. M. Kappes, D. Schooss, Ruthenium cluster structure change induced by hydrogen adsorption: Ru19. J. Phys. Chem. C, 2017, 121, 10645-10652

DOI: 10.1021/acs.jpcc.6b09521

E. Waldt, R. Ahlrichs, M.M. Kappes, D. Schooss, Structures of medium‐sized ruthenium clusters: The octahedral Motif. ChemPhysChem, 2014, 15, 862-865

DOI: 10.1002/cphc.201400011

E. Waldt, A.-S. Hehn, R. Ahlrichs, M. M. Kappes, D. Schooss, Structural evolution of small ruthenium cluster anions. J. Chem. Phys. 2015, 142, 024319

DOI: 10.1063/1.4905267

S. Kohaut, T. Rapps, K. Fink, D. Schooss, Structural evolution of palladium clusters Pd55- - Pd147-: Transition to the bulk.J. Phys. Chem. A, 2019, 123, 51, 10940-10946

DOI: 10.1021/acs.jpca.9b09369